Stress and Strain

When a force is applied on body, it is deformed to a small or large extent depending upon the nature of the material of the body and the magnitude of the deforming force. The deformation may not be noticeable visually in many materials but it is there. When a body is subjected to a deforming force, a restoring force is developed in the body.

This restoring force is equal in magnitude but opposite in direction to the applied force. The restoring force per unit area is known as stress. If F is the force applied and A is the area of cross section of the body, Magnitude of the stress = F/A .

The SI unit of stress is N m–2 or pascal (Pa) . There are three ways in which a solid may change its dimensions when an external force acts on it. These are shown in Figure below. In Fig(a), a cylinder is stretched by two equal forces applied normal to its cross-sectional area.

The restoring force per unit area in this case is called tensile stress. If the cylinder is compressed under the action of applied forces, the restoring force per unit area is known as compressive stress. Tensile or compressive stress can also be termed as longitudinal stress.

In both the cases, there is a change in the length of the cylinder. The change in the length ΔL to the original length L of the body (cylinder in this case) is known as longitudinal strain.

However, if two equal and opposite deforming forces are applied parallel to the cross-sectional area of the cylinder, as shown in Fig. (b), there is relative displacement between the opposite faces of the cylinder. The restoring force per unit area developed due to the applied tangential force is known as tangential or shearing stress.

As a result of applied tangential force, there is a relative displacement Δx between opposite faces of the cylinder as shown in the Fig. (b). The strain so produced is known as shearing strain and it is defined as the ratio of relative displacement of the faces Δx to the length of the cylinder L.
Shearing strain x L = tan θ .

where θ is the angular displacement of the cylinder from the vertical (original position of the cylinder). Usually θ is very small, tan θ is nearly equal to angle θ .

It can also be visualized, when a book is pressed with the hand and pushed horizontally, as shown in Fig. (c). Thus, shearing strain = tan θ ≈ θ .

In Fig. (d), a solid sphere placed in the fluid under high pressure is compressed uniformly on all sides. The force applied by the fluid acts in perpendicular direction at each point of the surface and the body is said to be under hydraulic compression. This leads to decrease in its volume without any change of its geometrical shape.

The body develops internal restoring forces that are equal and opposite to the forces applied by the fluid . The internal restoring force per unit area in this case is known as hydraulic stress and in magnitude is equal to the hydraulic pressure (applied force per unit area).

The strain produced by a hydraulic pressure is called volume strain and is defined as the ratio of change in volume (ΔV) to the original volume (V).

Since the strain is a ratio of change in dimension to the original dimension, it has no units or dimensional formula.
Related posts :

Elastic behavior of Solids
Weightlessness
Gravitational Potential Energy
Universal Gravitational constant
Kepler laws of gravitation

S

No comments:

Post a Comment